A dissection of the cauliflower mosaic virus polyadenylation signal.

نویسندگان

  • H Sanfaçon
  • P Brodmann
  • T Hohn
چکیده

Mutagenesis analysis of the polyadenylation [poly(A)] signal from the cauliflower mosaic virus (CaMV), a plant pararetrovirus, revealed striking differences to known vertebrate poly(A) signals. Our results show that (1) the AATAAA sequence is necessary for efficient cleavage at the poly(A) site, although the requirement for an authentic AATAAA might be less stringent in plant than in vertebrate cells; (2) surprisingly and in contrast to the majority of vertebrate poly(A) signals, the sequences downstream of the CaMV poly(A) site do not influence processing efficiency drastically although they affect the precision of cleavage; and (3) deletion of sequences upstream of the CaMV AATAAA sequence decreased processing at the CaMV site dramatically, suggesting the presence of one or several positively acting upstream elements. An oligonucleotide consisting of CaMV upstream sequences could induce the recognition of a normally silent exogenous poly(A) signal when inserted upstream of its AATAAA motif.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient functioning of plant promoters and poly(A) sites in Xenopus oocytes.

Mature Xenopus oocytes were challenged with DNA constructs including plant regulatory elements, namely, the Cauliflower mosaic virus (CaMV) 35S promoter as well as the nopaline synthase (NOS) promoter and polyadenylation signal. The bacterial chloramphenicol acetyl transferase (CAT) was used as a reporter gene. When microinjected into these cells, the plant-derived DNA constructs effectively pr...

متن کامل

Increased gene expression by the first intron of maize shrunken-1 locus in grass species.

The first intron of the shrunken-1 (Sh1) locus of maize was incorporated into constructs containing the chloramphenicol acetyltransferase gene (CAT) coupled with the nopaline synthase 3' polyadenylation signal. Transcription was driven with the 35S promoter of the cauliflower mosaic virus (CaMV) or the Sh1 promoter of maize. Transient gene expression was monitored following electroporation into...

متن کامل

Upstream sequences other than AAUAAA are required for efficient messenger RNA 3'-end formation in plants.

We have characterized the upstream nucleotide sequences involved in mRNA 3'-end formation in the 3' regions of the cauliflower mosaic virus (CaMV) 19S/35S transcription unit and a pea gene encoding ribulose-1,5-bisphosphate carboxylase small subunit (rbcS). Sequences between 57 bases and 181 bases upstream from the CaMV polyadenylation site were required for efficient polyadenylation at this si...

متن کامل

Dissection of cauliflower mosaic virus transactivator/viroplasmin reveals distinct essential functions in basic virus replication.

Cauliflower mosaic virus (CaMV) transactivator/viroplasmin (Tav) is an essential multifunctional viral protein. Dissection of Tav by deletion mutagenesis revealed that the central region is essential for CaMV replication in single cells but that the N- and C-terminal parts are not. Strains with mutations in the central region were defective in the translational transactivator function and could...

متن کامل

Immediate early transcription activation by salicylic acid via the cauliflower mosaic virus as-1 element.

Transgenic tobacco plants carrying a number of regulatory sequences derived from the cauliflower mosaic virus 35S promoter were tested for their response to treatment with salicylic acid (SA), an endogenous signal involved in plant defense responses. beta-Glucuronidase (GUS) gene fusions with the full-length (-343 to +8) 35S promoter or the -90 truncation were found to be induced by SA. Time co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 5 1  شماره 

صفحات  -

تاریخ انتشار 1991